Richard Carlsson

Klarna

All you wanted to know
about Character Encodings
but were too afraid to ask

= Why are there so many different encodings?

= What does all the terminology mean?

= What do I need to keep in mind?
= What is all this Unicode stuff anyway?

= How does Unicode work in Erlang?

= How do we switch our system to Unicode?

In the beginning, there was
the Teleprinter

= Incoming characters are printed to paper

= Keypress 1s sent to the remote teleprinter or
computer (and printed on the paper, for feedback)

= The first teleprinters were invented in the 1870s

= Baudot code (3-bit, shifted state for letters/symbols)

Baudot code?

Emile Baudot (1 baud = 1 'signalling event'/second)
1874, some 70 years before the first computers

5 bits (32 combinations)

A-Z,0-9, &()=%/-;!"?,:., ERASE, FIGSHIFT, ...
~60 characters 1n total, thanks to shift state

Binary, fixed length

= Only 2 signalling states: on/off
= Always in groups of 5, e.g., A = 00001

Yeah? Why not Morse code,
while you're at it?

= Even earlier, invented 1n 1844

= Varying length of symbols (E=-,Z=-——- -)
= As in Huffman coding, common symbols are shorter
= 5 different signalling states

= Short tone (1 unit length)
= Long tone (3 units)

= Gap (1 unit silence between tones within a symbol)

Letter space (3 units silence)

Word space (7 units silence)

Keep 1t simple

Simple and uniform is good for machines

2 levels (on/off) are easier than 5
Fixed-length groups 1s easier than variable-length

Bad part of Baudot code: stateful
= Last pressed shift key decides if 00001 = A or 1, etc.

= The human operator used 5 keys at once like a piano
chord, and the shift state didn't change very often

= Still pretty simple to build machines that handle it

Control confusion

We have already mixed symbols with control codes

= Erase (or "Delete”, or "Backspace™)
= Change shift state

= [ine Feed, Bell, and other control codes soon added
We're talking about controlling a teleprinter...

= position on paper, shift state, alert the operator...

...rather than representing ’characters”™

And 1n 1874, nobody thought about data processing

85 years later: ASCII

American Standard Code for Information Interchange
1963, 7-bit code (128 combinations)
Stateless (no “current shift mode” to remember)

Both uppercase and lowercase characters

= Bit 5 works as a Caps Shift, and bit 6 as Citrl

= 1000001 = A
= 1100001 = a
= 0000001 = Ctrl-A

= A-Z, a-z, and 0-9 are contiguous, for easy processing

But what about 8-bit bytes?

= The term ’byte” has been used since 1954

= Early computers had very varying byte sizes
= Typically 4-6 bits
= The IBM System/360 started the 8-bit trend, 1964

= Computer memories were small and expensive
= Every bit counted — not an easy decision, back then

= In the long run, 8 was more practical (power of 2)

Used IBM's own 8-bit character encoding, EBCDIC
= ...which everybody hated, but still exists out there

Extended ASCII

= ASCII assumes that only English will be used
= More symbols were needed for other languages

= Many 8-bit “extended ASCII” encodings created

= Often called "code pages”, and numbered
= E.g., IBM PC standard code page 437 (DOS-US)

= Countries picked their own preferred encoding

= Big mess, no interoperability between operating
systems and countries

Latin-1

= DEC VT220 terminal, 1983
= (Only like 100 years after those first teleprinters...)
= ”“Multinational Character Set” extended ASCII

= Became the ISO 8859-1 standard, also called Latin-1
= Variants: 8859-2 — 8859-15, Windows-1252, ...

= Still a lot of confusion

Not everyone uses Roman

= E.g., Shift-JIS (8-bit) for Japanese
= 0-127 are as in ASCII, with 2 exceptions:

= ~ (tilde) — ~ (overline)
= \ (backslash) — ¥ (yen)
161-223 are katakana (”alphabetical” symbols)

Variable-length encoding
129-159 and 224-239 are the first of 2 bytes

= 6355 common kanji (Chinese) + other symbols

Hard to jump in at any point: first or second byte?

Stateful encodings

= E.g., ISCII for Indian languages, or ISO 2022 for
Japanese, Korean and Chinese

= Escape codes change the meaning of all the
following bytes until the next escape code

= May also change number of bytes per character

= Even harder to jump 1n at any point: must scan
backwards to find latest escape code

How do you know which
encoding a text is using?

= Most software leaves this problem to the user

= Most file formats have no way to indicate encoding

= A raw text file has no place to store such metadata
= That 1t works at all 1s mainly by convention

= People on similar systems and in the same country
usually use the same encoding

= If not, you have a problem (yes, you)

= Converting encodings can destroy information

IANA encoding hames

= The IANA (Internet Assigned Numbers Authority)
maintains the list of official names of encodings

to be

used 1n communication

= The names are not case sensitive

= For example:

= Name: ANSI X3.4-1968 [RFC1345,KXS?2]

lias: ASCII
lias: US-ASCII (preferred MIMI

lias: ISO646-US

&, name)

Charset declarations
« Email/HTTP headers:

= Content-Type: text/html; charset=utf-8
= XML declaration (at start of XML document)

= <7?xml version="1.0" encoding="1s0-8859-1" 7>

= If you don't know the charset, how can you read
text that says what charset it 1s?

= Email/HTTP headers are always ASCII only

= Or guess encoding and see 1f you can read enoug]

the

h to

find the declaration that tells you the real encoding

= Most encodings are downwards ASCII compatib!

(&

8 bits can be unsafe

= Some old systems assume that 7-bit ASCII 1s used

= The extra bit in each byte was used as a checksum
(parity) in data transfers, or as a special flag

= That bit was often automatically reset to O
= Zero bytes, line breaks, etc., could also be mangled
= To send 8-bit data through such systems and be

sure that 1t survives, you have to use only
character codes that will not be touched

= E.g., Base64 (or the older Uuencode) for e-mail
" [1, 128, 254] => "AYD_I_H

A few simple rules

Remember what encoding your strings are in
Never mix different encodings in the same string

When you write to a file, socket, or database:

= What encoding 1s expected?
= Do you need to convert before writing?

= Is 1t your job to provide a charset declaration?
When your program gets text from somewhere:

= Do you know what the encoding 1s?

= Do you need to convert to your local encoding?

Never trust your eyes

There can be several layers of interpretation
between your output and what you see

= Some of these may try to be clever and "help” you

= There are many system settings that can affect things

Do not trust what your editor shows you
Do not trust what you see in the terminal

If you want to know what's in a file or data stream,
use a low level tool like 'od -c <filename>'

Unicode

I e
ST S

Ash nazg durbatullk, ash nazg gimbatul,
Ash nazg thrakatulik agh burzum-ishi krimpatul.

One ring to rule them all, one ring to find them,
One ring to bring them all and in the darkness bind them.

Terminology

= People use the terms “character encoding”,

29 99

“character set” or ’charset”, “code page”, etc.,
informally to mean more or less the same thing

= A set of characters (and control codes)

= ...and how to represent them as bytes

= But there are many different concepts when it
comes to languages and writing systems

= Unicode terminology tries to separate the concepts

What is a "character”?

It's not the number it's been given 1n an encoding

It's not the byte (or bytes) stored in a file

It's not the graphical shape (which font?)

It's really more the idea of the character

Unicode talks about abstract characters and gives
them unique names, such as LATIN CAPITAL
LETTER X, or RUNIC LETTER OE (%)

Code points

Each abstract character 1s assigned a code point

A natural number between 0 and 10FFFF™* (over a
million possible code points)

Divided into “planes” of 2'° code points each

= 000000-00FFFF 1is called the Basic Multilingual Plane
and contains most characters in active use today

= Most planes are currently unused, so plenty of space

Just numbers, not bytes or machine words

The subset 0-255 1s Latin-1 (and 0-127 1s ASCII)

But where do fonts come in?

= Encodings (and strings in general) just express the
abstract characters, not how they should look

= A font maps the abstract code points to glyphs
(specific graphical shapes): A, A, A, A, A...

= You can usually forget about fonts, but:

= That you can handle a character (code point) in your
code doesn't mean everybody can see the symbol

= No single font contains all Unicode code points

= Without a suitable font, the user sees € or similar.

Unicode encodings

= 21 bits are needed for full Unicode

= Unicode was first designed for 16 bits (not enough)

= But the range 0-10FFFF 1s final (they promise)

= There 1s a family of official encodings for Unicode
called Unicode Transformation Format (UTF)

= UTF-8
= UTF-16
= UTF-32

= ... and a couple of others that are not very useful

UTF-8

= Quickly becoming the universally preterred
encoding 1in external representations everywhere

= Downwards ASCII-compatible (0-127 unchanged)

= UTF-8 1s not the same thing as Latin-1!

= Latin-1 1s fixed-length (exactly 1 byte per character)

= UTF-8 1s variable-length (1-6 bytes per character)

= Characters in the BMP (0O-FFFF) use 1-3 bytes
= Latin-1 codes 128-255 need 2 bytes (440, etc.)
= ASCII characters use a single byte

UTF-8 detalls

Bits Max Bytel Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

7 7F 0.......

11 7FF 110..... 10......

16 FFFF 1110.... 10...... 10......

21 1FFFFF 11110... 10...... 10...... 10......

26 3FFFFFF 111110.. 10...... 10...... 10...... 10......

31 7FFFFFFF 1111110. 10...... 10...... 10...... 10...... 10......

= First byte says exactly how many bytes are used

= Bytes 2-6 have high bits 10 — easy to find start byte
= If data 1s corrupted, it 1s easy to find next start byte
= Preserves sorting order of Unicode code points

= Easy to recognize UTF-8 text; also, FE/FF not valid

UTF-16

= Some systems (e.g., Java and the Windows API)
use 16-bit characters — after all, Unicode first said
they were going to use no more than 16 bits

= UTF-16 uses 2 bytes per character for 0000-FFFF

= Code points above FFFF are encoded using two 16-
bit characters (same trick as in Shift-JIS) called
surrogate pairs

= D800-DBFF (high) followed by DCOO-DFFF (low)
= Together they give a number from 10000-10FFFF

= Only valid when used 1n pairs (and 1n correct order)

UTF-32

= UTF-32 means that a 32-bit integer 1s used for each
code point 1n the string

= Can of course use 64-bit integers or wider as well

= No surrogate pairs may be used — always expanded

= Mainly used internally in APIs and in chars/strings
in programming languages
= In particular for functions that work on a single

character rather than on a string

= Unix-like systems normally use 32-bit wide
characters (wchar_t) also 1n strings

What about "UCS”?

= Universal Character Set (ISO 10646)

= Mostly the same as Unicode (same code points)

= Byte encodings that nobody liked (UTF-1, UCS-2)
that have been obsoleted by UTF-8 and UTF-16

= Basically, they tried to create a standard too soon

= Not enough acceptance from software vendors

= Unicode "won” and UCS was adapted to Unicode

= If you see "UCS”, think “Unicode” or ”obsolete”

Endianism

= If you send 16-bit or 32-bit data as a stream of
bytes, you have to decide in which order to send
the bytes of each integer: high or low bytes first?

= Someone who reads the data must know 1n which
order to reassemble the bytes into integers

= Default byte order in Internet protocols 1s big-
endian ("network order”)

= But usually it depends on the system, 1.e., little-
endian 1s typically used on x86-machines, etc.

= UTF-8 has no endianism; the byte order 1s fixed

Byte order mark (BOM)

= The code point FEFF can be used to indicate the
byte order, by 1nserting it first in the text

= If found, 1t 1s not really part of the text, just a hint

= ”Zero-width, non-breaking space”, 1.e., invisible, 1f it
occurs anywhere else

= FE followed by |

[| —

= T

FF followed by

FF implies big-endian

FE implies little-endian

he code point FFFE i1s reserved as invalid 1n

Unicode, so there can only be one interpretation

= Don't use BOM in UTF-8 (causes confusion)

Not only encodings

Unicode includes a number of rules and algorithms
for normalizing, sorting, and displaying text

The rules for alphabetic sorting depend on the
language (English, Swedish and German differ)

How do you convert Croatian text to uppercase’?

There are free support libraries that handle this for
you, like ICU for C/C++

= Many programming languages have ICU bindings

Normalization forms

= Regardless of encoding and surrogate pairs,
Unicode text 1s variable-length (even in UTF-32)

= There are base characters and combining characters

= 7 (776) 1s a combining character (diaeresis)

= A can be represented by [196] or by [65, 776]

= [t can get much more complicated than that

= The combining characters follow the base character

= To compare strings, they must be normalized

= NFC (normal form composed) 1s usually best

Chars? We don't need no steenkin' chars!

Strings are already Unicode

= Erlang strings are just lists of integers

= Erlang integers are not bounded in size

We already use Latin-1 (0-255) 1n our strings
= Unicode simply means larger numbers in the lists

= Technically 1t's UTF-32 — one 1nteger per code point

= You have to think about other encodings when you
read or write text, or convert to or from binaries

= Erlang source code 1s still always Latin-1! No
Russian 1n source files for now, sorry!

Binaries are chunks of bytes

= The question 1s: how are the code points of the
string represented as bytes in the binary?

For Latin-1, you use exactly one byte per character

= Tist_to_binary(String) / binary_to_list(Bin)

To pack a string as a UTF-8 binary:
= unicode:characters_to_binary("Motdorhead")
= To unpack a UTF-8 binary to a string:

« unicode:characters_to_1list(<<"MotAfrhead">>)

10-lists are also just bytes
An IO-list can be:
= A binary, containing any bytes
= A list of integers and/or other 10-lists (to any depth)
= All integers must be between 0 and 255

E.g., [88, [89, 90], [32, <<90,89,88>>], ...]
Concatenating 10-lists 1s cheap: L3 =[L1, L2]

1O-lists can be written directly to files/sockets or
converted to binary using iolist_to_binary(List)

Latin-1 strings can be used directly as 10O-lists

New Unicode type: chardata

= Chardata 1s similar to an 10-list. Chardata can be:

= A binary, containing UTF-8 encoded characters

= A list of integers and/or other chardata, to any depth
= All integers are Unicode code points (0-10FFFF)

« E.g., [1234, <<195,132>>] — "AA”

= Library support for converting to/from other
encodings, and for writing to output

= jo:format(’~ts”, [CharData]) instead of ~s

/0 stream encodings

Before Unicode in Erlang, I/0O streams assumed the
data was 1n Latin-1, and never modified the bytes

The file:open/2 function now takes an option
{encoding, ...} which by default i1s T1atin1

You can change the encoding of an existing stream
with io:setopts/2 or inspect 1t with io:getopts/1

The shell now uses Unicode I/0 by default if the
OS language settings (LANG etc.) indicate it

Think before you output

= A plain old tlat Latin-1 string in Erlang is a charlist
and can be printed with ~ts as well as with ~s

= A Latin-1 binary cannot be printed with ~ts,
because ~ts expects binaries to contain UTF-8

= Chardata cannot be written directly to a file or
socket — 1t may contain integers above 255

= If you know it contains only ASCII integers (0-127)

and/or UT

expects U

F-8 binaries, and the output stream

'

F-8, you can treat it as an [0O-list

Switching to Unicode

How can you gradually change your system
to support Unicode all the way through?

Start with the output!

= First of all, make sure you can output Unicode, in
web pages, mail, PDFs, etc. (Safest, and makes
sure you can see the results of later changes)

= Start with one page/document at a time and test

= Generate charset declarations for UTF-8
= Transform the text to UTF-8 when you output
= Check that result looks good, both for Latin-1 text

(e.g., ad0), and full Unicode text (e.g., Cyrillic
characters)

Get a grip on internal data

Start assuming that strings can contain codes > 255

Most code working on list strings needs no change

Check all packing/unpacking of binaries

Use UTF-8 1n binaries, not Latin-1, in particular
when you store them in the database or on disk

= Consider converting data in old tables/files to UTF-8

Prefer UTF-8 encoded binaries rather than lists of
characters whenever you are storing text

Don't accept any Unicode
input until you're ready!

= All input to the system must be limited to Latin-1
until you can handle Unicode all the way through!

= Make sure that web pages do not post UTF-8
encoded text back to you, even if the text on the
page 1s declared as UTF-8

= accept-charset attribute

= Check the input at runtime for safety

= Test sending 1n e.g., Cyrillic and see what breaks!

Not all code at once!

= Incrementally — a ”big bang” update of all code to
suddenly handle full Unicode 1s not feasible in a
large and continuously running system

= Take care of one part of the code at a time

= Convert to/from Latin-1 when you interface with
other code that 1s not Unicode-compliant yet

= Convert gracefully; don't crash if the conversion
fails. Replace chars >255 with '?' instead.

Last: accept Unicode input

= Once you let full Unicode 1nto the system at some
point, 1t will start to spread all over the place

= Entry points: HTTP POST or GET (URL queries),
XMLRPC, files via FTP, etc. Etc.

= Ensure all Unicode input gets normalized to NFC
(composed normal form) at the entry point!

= Should already be guaranteed by text sent from web
browsers (W3C standard), but you need to make sure

What could possibly go wrong?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

